| 摘要: |
| 提升户外热舒适性是改善户外活动空间环境品质的重要策略。针对气候适应性设计需求,围绕室外热舒适识别、评估、优化全流程构建了一套涵盖
“耦合模拟-动态评价-优化设计”三大模块的户外热舒适综合评价方法体系。该方法体系基于Grasshopper平台,通过集成热舒适模拟与评价过程,简化了技
术操作流程;建立了热舒适时长和热不适偏差2个评价指标,反映户外活动空间热舒适时空特征;通过绘制热舒适优化建议图,建立了空间优化传导机制。基于
此,以某大学校园为案例,对其户外空间热舒适进行模拟评价。结果表明,该综合评价方法能够有效识别户外活动空间的热舒适调整区域,并确定关键微气候影
响因子。研究成果可为户外空间气候友好性设计提供科学方法与实践参考。 |
| 关键词: 风景园林 室外热舒适 户外活动空间 时空动态 微气候 气候适应性设计 |
| DOI:10.19775/j.cla.2025.07.0070 |
| 投稿时间:2023-11-08修订日期:2024-06-18 |
| 基金项目:国家自然科学基金项目(32471660);中央高校基本科研业务费专项资金项目(2662022YLYJ002);武汉市园林和林业局科技计划(WHGF2022A04) |
|
| A Comprehensive Evaluation Method for Thermal Comfort to Assist Climate Adaptability Design ofOutdoor Activity Spaces |
| YU Qing,,TIAN Yu,,WU Changguang* |
| Abstract: |
| Enhancing outdoor thermal comfort has become a critical strategy
for improving environmental quality in urban spaces amid escalating climate
challenges. This study develops a comprehensive thermal comfort evaluation
framework to support the climate-adaptive design of outdoor activity spaces,
integrating three core modules: coupled simulation, dynamic assessment, and
optimization design. Addressing limitations in current evaluation methods -
particularly the neglect of spatiotemporal dynamics and insufficient design
applicability - the proposed system introduces significant methodological
innovations through three key components. The technical innovation lies
in establishing an integrated workflow through the Grasshopper platform,
which consolidates ENVI-met microclimate simulation with parametric
analysis tools. This workflow comprises four functional modules: 1) 3D
modeling and meteorological data input via Rhinoceros and Ladybug;
2) Parametric simulation execution using Dragonfly; 3) Spatiotemporal analysis
employing GH-Python and MGWR software; and 4) Optimization mapping
through multi-criteria overlay visualization. This integration reduces technical
barriers for designers by eliminating cross-platform data conversion needs.
The evaluation system introduces two novel indices: Outdoor Thermal
Comfort Duration (OTCD) quantifies cumulative comfortable periods using
Physiological Equivalent Temperature (PET) thresholds, while Outdoor
Thermal Discomfort Deviation (OTDD) measures thermal stress intensity
through PET exceedance values. These metrics enable spatiotemporal
analysis through a dual-axis classification matrix that identifies ten distinct
thermal comfort zones, addressing the critical gap in temporal continuity
and spatial heterogeneity assessment prevalent in current static evaluation
approaches. A groundbreaking contribution is the development of thermal
comfort optimization suggestion maps. These visual tools synthesize three
analytical layers: 1) Demand-supply matching identifies intervention priorities
across activity zones (maintenance, improvement, and redesign areas);
2) Geographically weighted regression (GWR) pinpoints dominant microclimate
factors (radiation, wind speed, temperature, humidity); 3) Multidimensional
overlay integrates spatial elements (vegetation, water features, pavement
materials) to generate location-specific mitigation strategies. Building upon
this framework, a case study was conducted on a university campus to
evaluate outdoor thermal comfort through simulation practices. The results
demonstrated that this comprehensive evaluation method effectively identifies
thermal comfort adjustment zones in outdoor activity spaces and pinpoints
key microclimate factors influencing thermal discomfort. The proposed thermal
comfort assessment system provides valuable references for developing
innovative climate-friendly design strategies in outdoor spaces. |
| Key words: landscape architecture outdoor thermal comfort outdoor activity
space spatiotemporal dynamics microclimate climate-adaptive design |